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1. I n t roduc t ion  

Let G = (V, E) be a finite, connected, undirected graph. We are interested in 

finding or estimating the optimal value of the constant a 2 = a2(G) satisfying 

the inequality 

(1.1) Ee t(y-Ey) ~ e a~t2/2, for all t E R, 

where f is an arbitrary Lipschitz function on V, and where the expectations are 

taken with respect to the normalized counting measure ~r on V. The Lipschitz 

property is taken with respect to a metric d associated with the graph; typically, 

d is the standard graph distance, given by the length of the shortest path between 

vertices. In this case, by f Lipschitz we mean that If(x) - f(Y)l <- 1, whenever 

{x, y} E s The quantity a2(G) in (1.1), which we call the subgaussian constant 
of the graph, is related to the so-called spread constant 

c2(G)= sup Varf,  
fe.T'(G) 

studied in [A-B-S] (cf. also [B-H1]). Above, the supremum is taken over the 

family ~(G) of all Lipschitz functions f on V, and Var is the variance of f 

with respect to lr. Both constants quantify the deviation of a Lipschitz function 

f from its mean Ef.  The advantage of the subgaussian constant is, however, 

the fact that it is responsible for the subgaussian tails of Lipschitz functions: it 

follows from (1.1) that, for all h > 0, 

(1.2) ~r{f - E f  >_ h} <_ e -h:/(2"~). 

The subgaussian constant is also the optimal value in a transport inequality on 

(V,d), 
. )  < = . ( x ) l o g ( c a r d ( Y ) . ( x ) ) ,  

xEV 

relating (cf. [B-G]) the Kantorovich-Rubinstein (or Wasserstein) distance 

Wl(~r,v), the minimal "cost" needed in order to transport ~ to an arbitrary 

probability measure u on V, to the informational divergence D(u I ~) (or the 

relative entropy or Kullback-Leibler "distance" of u with respect to r).  

The generic inequality, Elf  - m(f)] _< ~/Var f,  where m( f )  is a median of 

f E 5~(G), implies together with (1.2) that 

(1.3) lr{f - m( f )  >_ h} <_ e -(h-c)2/(2~2), h > c = c(G). 

These inequalities may further be connected to the isoperimetric problem on 

the graph where one minimizes the measure of A h -- (x C V : d(x, A) < h}, 
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the h-neighborhood of A for the metric d, given that  the set A has a prescribed 

size. In particular, applying (1.3) to the Lipschitz function f(x) = d(x, A) with 

an arbitrary A C V such that  ~r(A) > 1/2, and noting that,  for such an f ,  

Ef  <_ c(G) < a(G), we arrive at a concentration type inequality 

{ (h---a)2 
7r{x:d(x ,A)>_h}<_exp 2a 2 j ,  h_>cr. 

For h integer, the above is just 

{ ( h + l - a ) 2 }  h + l > a ,  h = 0 ,1 ,2 , . . . .  (1.4) 1 - 7r(A h) ~_ exp 20.2 , _ 

It is in this way that  we study concentration inequalities by trying to compute 

or bound from above the subgaussian constants. 

A first motivation for such an approach is a question raised by Talagrand as 

part of his general investigations on isoperimetry in product probability spaces. 

(See the remarks following the proof of Corollary 2.2.3 in [Tall.) Is it indeed 

the case that  for every A c f~n with #(A) _> 1/2, 

(1.5) 1 - p(A h) <_ Ke -2h2/'~, 

where (~t '~ = ~1 •  • ~ ,  # = #1 •  • #n) is an arbitrary product probability 

space, A h is the enlargement of A with respect to the Hamming distance d on 

gt n, and K is a universal constant? Recall that  the Hamming distance between 

x E gt n and A C ~t '~ is given by 

d(x, A) = min{k : 3y E A; card{/_< n; xi ~ Yi} _< k}. 

Talagrand also remarked that  using certain more or less standard arguments 

(such as those used in [Ta2]) it suffices to restrict the problem to down-sets (also 

called hereditary sets) A C ~n = {0, 1} ~ equipped with the product measure 

#, where #i = ~p, i = 1 , . . . ,  n is the Bernoulli measure with success probability 

p for 0 < p < 1. Indeed, Steps 1 through 4 of the proof of Theorem 7 in [Ta2] 

carry out such a reduction. (Recall also that  A C {0, 1} ~ is a down-set if x E A 

and y _< x imply that  y C A. Here y _< x, if for every i, Yi <_ xi.) In the following 

(see the end of Section 2) we settle Talagrand's question in the affirmative. In 

fact, we show that  the case of the discrete cube with down-sets follows easily 

from the results of Jogdeo and Samuels [J-S] as well as Bollobs and Leader 

[B-L3]. 

A second crucial motivation is the simple observation that,  for G n the Carte- 

sian product graph (equipped with an gl-type metric), 

(1.6) a2(G '~) = na2(G). 
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Therefore one may say that (in contrast to (1.4)) the property (1.1) tensorizes. 

Combining (1.4) and (1.6), we obtain concentration for the product graph in 

the form of an asymptotic isoperimetric inequality: 

PROPOSITION 1.1: For all A C V n with 7rn(A) >_ 1/2, 

(h + 1 (7V~) 2 
(1.7) 1-Trn(A h) < exp{ - h + l  > ayr~, h = 0 ,1 ,2 , . . . .  - J '  

Inequalities such as (1.4) and (1.7) are well-known in several situations. In 

the present work, we obtain inequalities of this type by computing or estimating 

the subgaussian constant for the following graphs: 

1. The weighted two point space and the weighted discrete cube (section 2); 

2. Kv: the complete graph on v-vertices (v-clique) (section 3); 

3. Pv: a path on v-vertices (v-path) and some generalizations (section 4 and 

appendix); 

4. Cv: a cycle on v-vertices (v-cycle) (section 5); 

5. (Sv, d,): the symmetric group with Hamming distance, and (S~, pv): the 

symmetric group under transpositions (section 6); 
6. all of the above (section 7). 

In particular, we find the exact constants a2(P,) and a2(K~), and our es- 

timate for a 2 of (S., p~) is tight up to a multiplicative factor of 4, while that 

of (S,, dv) is tight up to a multiplicative factor of 16. Note that, in general, 
finding the extremal sets which minimize the size of A h for h = 1, 2,. . .  is an 

extremely nontrivial problem; in particular, for Cv above, this is still an open 

problem; while for K n (rather than Kv) this has only been very recently solved 

by Harper (see [Ha2]). Bollob~s and Leader found the extremal sets for the 

n-dimensional grid graph P~ (see [B-L2]), while for the n-dimensional discrete 
torus C~, v even, this is due to Karakhanyan [K], Bollobs and Leader [B-L1] 

and Riordan [R]. (To the best of our knowledge, for v odd this isoperimetric 

problem for C~ is still open.) One of the purposes of the present paper is to 

illustrate the fact that using a more functional analytic approach, it is possible 

to provide essentially best possible concentration inequalities without knowing 

the extremal sets. This is also compared to concentration inequalities obtained 

via log-Sobolev inequalities. 

Since for every f,  

Var f = lim E et(I-E/) 1 
t-.o t2/2 ' 

c2(G) _< a2(G). We will show cases of equality for some of the above exam- 

ples. In general, this inequality is strict; the weighted two-point space and 
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the unweighted three-point space (i.e., the complete graph on three vertices 

with uniform probability over the vertices) provide examples of strict inequal- 

ity. Furthermore, it has recently been established (see [S-T]) that  the family of 

bounded-degree expander graphs - -  bounded-degree graphs with spectral gap 

bounded uniformly (independent of the size of the graph) away from zero - -  

provides a class of examples for which the spread constant c 2 is bounded from 

above by an absolute constant, while the subgaussian a 2 could grow at least as 

large as logv (up to a universal multiplicative constant), where v is the num- 

ber of vertices in the expander graph. Since a randomly chosen bounded-degree 

graph is an expander graph, asymptotically almost surely, we may conclude that  

the inequality is in fact typically strict. 

To start with, introduce the functions 

LG(t , f )  = Ee t(f-E/),  Lc(t)  = sup Ee t ( / - E / ) ,  t C R.  
f~y(c) 

Clearly, L c ( - t )  = Lc(t) .  More precise information is contained in Lc  than 

in a2(G), so it is reasonable to first try to find Lc  and then to consider the 

analytical problem of computing the subgaussian constant via the relation 

log Lc  (t) 
a2(G) = sup 

t>0 t2/2 

Note also that Lcn(t) = Lc(t)  ~, for all t C R, (see [A-B-S] for a proof) and 
thus a2(G ~) = na2(G). 

2. T w o  po in t  a n d  H a m m i n g  spaces  

The simplest graph of interest is the two point space V = {0, 1} with uniform 

measure 7r = (50 +51)/2 which is a particular case of the examples 2-4 described 

above when v = 2. We denote this graph by/ (2  (p). It is well known, and due to 

Hoeffding, that  (r 2 (/(2 (1/2)) = 1/4 (cf. e.g., [McD]). Moreover, since the seminal 

work of Harper [Hall, the solution to the isoperimetric problem is also known 

for {0, 1} n with the uniform measure. In the sequel, we will however need V to 

be equipped with an arbitrary probability measure # = ~tp assigning the mass 

p E (0, 1) to the point 1 and the mass q = 1 - p to the point 0. 

PROPOSITION 2.1: Given a function f on {0, 1}, the optimal value of a 2 in the 

inequality 

(2.1) Ee t(f-Ef) < e a2t2/2, 
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where t E R is arbitrary, is given by 

P -  q q(f(X) - f(0)) 2. (2.2) 2 a 2 =  logp log 

The above constant (2.2) was first computed in an unpublished work [B]. Here 

and throughout this section, the expectations and the other integral quantities, 

like the variance, on {0, 1} are understood with respect to the Bernoulli measure 

#p = p51 + qSo. The discrete cube {0, 1} n is itself equipped with the product 

probability measure #~. 

For p = q = 1/2, the value of 2a 2 in (2.2) is defined, as the limit as p --. 1/2, 

to be (f(1) - f(0))2/2. This value maximizes the right hand side of (2.2) over 

all p's. In particular, 
Ee t(f-Ef) ~ e t~/s, 

for all t E R, as soon as 0 _< f < 1. 

Introducing the entropy functional 

Ent g -- Eg log g - Eg log Eg, g > 0, 

the proof of Proposition 2.1 relies on: 

LEMMA 2.2: The optimal constant e = cp in the inequality 

(2.3) cVarg _< EgEntg,  

where g is an arbitrary nonnegative function on {0, 1}, is given by 

log p - log q 
Cp = p q  

p - q  

When p = q = 1/2, the value of Cp becomes limp__,1/2 cp = 1/2. As we will also 

see, (2.3) becomes equality for the function g such that  g(O) = p/q, g(1) = q/p. 

The inequality (2.3) can be viewed as a converse to the general inequality 

Varg _> Eg Ent g which holds on an arbitrary probability space. As for the 

constant, it is the same as the optimal c in 

Entg  2 _~ cE[Vg[ 2, 

where [Vg[ = [g (1) -  g(0)[ (cf. [D-SC], [SC]); however, the relationship with 

(2.3) is not that  transparent. 

Proof'. Set g(1) = a > 0, g(0) = b _> 0, and without loss of generality assume 

that  in (2.3) 

(2.4) Eg = pa + qb = 1, 
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so that  (2.3) takes the form 

cpq(b - a) 2 _< pa log a + qb log b. 

By symmetry, we also assume that  p ___ 1/2, a < b, so that  a < 1 <_ b <_ 1/q. Let 

~(b) = pa loga  + qblogb 
( b -  a) 2 , 1 < b < 1/q, 

where a depends on b according to (2.4). At b -- 1 (which is the only case where 

a = b) p is extended by continuity to be pq/2. We prove below that  ~ has only 

one point of minimum b = p/q (and thus a = q/p). To this end, it will suffice to 

show that  this point is the only solution of the equation ~(b)  = 0 in the interval 

1 < b < 1/q when p > 1/2. Differentiating in b and recalling that  a~(b) = - q / p ,  

we find 
~' (b) = pq(b - a)(log b - log a) - 2(pa log a + qb log b) 

p(b - a) 3 

It is easy to verify that  T'(p/q)  = O. Now let 

r = p q ( b -  a ) ( l o g b -  loga) - 2(pa loga+qb logb) ,  1 < b < 1/q, 

so that  ~'(b) = 0 ~ r = 0, for b > 1. Two more differentiations give 

q (b-1)(2qb 1). 

Consequently, ~b is strictly concave in [1,1/(2q)] and strictly convex in 

[1/(2q), 1/q]. In addition, r = r = 0. Therefore, for some b0 C (1, 1/q), 

this function is strictly decreasing on the interval [1, b0] and strictly increasing 

on [bo, 1/q]. In particular, the equation r = 0 has at most one solution on 

(1, 1/q) and, as we know, this solution exists and is given by b = p/q. When 

p = q = 1/2, the interval of concavity of ~b degenerates to the point b = 1 = p/q. 

Lemma 2.2 is proved. | 

Proof  of  Proposition 2.1: We may assume that  E f  = 0 and that  f(0) ~ f(1) 

so that  a priori a > 0. The entropy functional has the following well-known 

representation: 

Entg  = sup{Eug : Ee u <_ 1}. 

Hence, the inequality Ee" _< 1 is equivalent to Eug <_ Ent g, where g > 0 is 

arbitrary. Applying this to u = t f  - a2t2/2, we see that  (2.1) is equivalent to 

(2.5) E ( t f - a 2 t 2 / 2 ) g  <_ Entg,  g > 0, t E R.  



262 S.G. BOBKOV, C. HOUDRt~ AND P. TETALI Isr. J. Math. 

For a fixed g with Eg > 0, the above left hand side is maximized for 

E f g  (2.6) t =  

and (2.5) becomes 

(Efg) 2 _< 2a2EgEntg,  g _> 0. 

But, on the two point space, since E f  = 0, we have 

(Efg) 2 = pq(f(1)  - f(0)) 2 Var g. 

Hence, the above inequality can be rewritten as 

pq(f(1)  - f(0)) 2 Varg < EgEnt  g, 
2a2 

where g is an arbitrary nonnegative function on {0, 1}. It remains to apply 

Lemma 2.2 to obtain Proposition 2.1. | 

We may now summarize: 

PROPOSITION 2.3: Let 0 < p < 1. For the discrete cube V = {0, 1} n equipped 

with the product measure ~p, the subgaussian constant is given by 

a2 = n(p - q) 

2(log p - log q)" 

Applying Proposition 2.3 to the Lipschitz function f ( x )  = Xl § " .  + Xn on 

V implies via (1.2) a subgaussian deviation inequality for the number Sn of 

successes in n independent Bernoulli trials with success probability p: 

(2.7) Pr[[S~-:nPv ~ > h }  < e x p {  logp-logqp q h2 }_<exp{_2h2}, h>_0. 

We now return to Talagrand's question mentioned in the introductory section 

and further study concentration on the Hamming space. Before removing the 

question mark after (1.5), and for the sake of completeness, we first state the 

results of Jogdeo and Samuels and of Bollob~s and Leader we need. Theorem 3.2 

and Corollary 3.1 of [J-S] assert the following: Consider n independent Bernoulli 

trims, the i th trim with success probability 0 < Pi < 1. Then 

(i) if the mean number of successes is an integer k then the median is also k, 

(ii) if the mean number of successes is between the integers k and k + 1 then 

the median is either k or k + 1. 
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On the other hand, one of the main results (Corollary 5) of [B-L3] asserts that  
k for any down-set A in the discrete cube {0, 1} n, if #p(A) > ~ i = 0  (? )P i (1-P)  n-~, 

then 

k+h  

z 
i=O 

PROPOSITION 2.4: Forn _> 1, let # = #p, with #p({1}) = p and #p({0}) = l - p ,  

0 < p < 1. Then for every A C {0,1} n, with #(A) >_ 1/2, and for every integer 
h _> 1, we have 

(2.9) 1 - #(A h) <_ Ke -2h2/n, 

where g > 0 is an absolute constant, and A h = {x E {0, 1} n : d(x, A) <_ h}, d 
being the Hamming distance. 

Proof." As indicated before, we can take A to be a down-set with #(A) > 1/2. 

In light of the results of [J-S], observe that  

[~pJ-1 

z 
i=0 

also assuming that  LnpJ > 0. (The second inequality follows from the fact that  

a median is either LnpJ or LnpJ + 1.) Even if LnpJ = o, it is still true that  

/t(m) _> (1 - p ) n ,  since every down-set contains (0 , . . . ,  0). Now using (2.8) and 

also the fact that  only the values h < n - 1 need to be considered, we conclude 

that  n(n) 
1 - #(A h) <_ ~ pi(1 _ p)n-i 

i= [npJ +h 

= Pr{Sn > LnpJ + h} <_ Ke -2h2/n, 

where the last inequality is standard and also easily follows from the second 

subgaussian inequality in (2.7). This proves the result with K = e a. Actually, 

using the first inequality in (2.7) and for p ~ 1/2, the exponent - 2  can be 

improved to - ( log  p - log q)/(p - q). 
Since for {0, 1} n, with p = 1/2, we have a 2 = n/4, (2.9) can be rewritten as 

(2.10) 1 -- #(A h) <_ Ke -h2/(2a2), 

with K = e 4. Therefore, one may wonder whether or not this last inequality 

remains valid for an arbitrary (weighted) graph, or equivalently whether or not 
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the spread constant e(G) in the deviation inequality (1.3) can be removed at 

the expense of an absolute multiplicative constant K. A positive answer to 

this query would also easily settle Talagrand's question since the subgaussian 

constant of any Hamming space is at most n/4. However, the weighted discrete 

cube (of increasing dimension n) provides a counterexample to such an intrigu- 

ing question (even though the particular case n = 1 is affirmatively solved by 

Proposition 2.1). | 

Indeed, assume (1 _p)n = 1/2 so that  p is of order ( log2)/n + O(1/n2), as 
n -~ c~. By Proposition 2.3, the inequality (2.10), for which we are seeking a 

counterexample, becomes 

1 - #(A u) <_ Kexp{  
logp logq 

Now, the only set of #-measure 1/2 is the one point set A = { (0 , . . . ,  0)}. For 

h = n - 1, we thus have A h = {0, 1} n \ { (1 , . . . ,  1)} and the last inequality 

simplifies to 

(2.11) l ~  l~ q ( 1 - p  - q nl) 2 - log P-1 <: __l~ 

But, a simple Taylor expansion shows that the main term on the left of (2.11) 

is - 2 p  logp which is of order (2 log 2 log n)/n, and so cannot be bounded by the 

right hand side of (2.11). 

It is standard that (2.10), for p = 1/2, implies 

(2.12) #{ f  - m(f)  > h} <_ g e  -h2/2n, 

for any f ,  Lipschitz (with constant 1) with respect to the Hamming distance 
on (0, 1} ~ and again K = e 4. It is thus also natural to wonder if this last 

inequality can be sharpened by replacing 1/2n with 2/n, possibly worsening the 

absolute constant K. This would then match the deviation inequality from the 

mean, up to the universal constant K. On (0, 1} this is indeed immediately true 

from (2.12) (and with g = e11/2), and on {0, 1} ~ for p small (p <_ 1/(e s + 1) 

will do) or p close to 1 this is also true by Proposition 2.3. Now, in general, 
e -2h2/n <_ ehe -2(h+l)2/n for all h < n, n _> 2. Thus (2.9) admits a small 

improvement: 
1 - ~(A h-l) <__ ege -2h2/n, 

for all h >_ 1, integer and all A C {0, 1} ~ with #(A) _> 1/2 where # is the 

weighted product probability measure as in Proposition 2.4. Given a Lipschitz 
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function f on V, applying the above inequality to A = {x : f ( x )  < m(f )} ,  and 

since A h-i  is contained in { f  < m ( f )  + (h - 1)}, gives 

(2.13) # { f  - re( f )  > h} < e9 e -2h2/n. 

3. Complete graph 

Let Kv = (V, s be the complete graph: V is a non-empty finite set of cardinality 

v, and 

E = {{x, y}:  x, y e v, �9 # v). 

The graph metric here is d(x, y) = l{x#u}. Thus, a function f on V is Lipschitz 

if and only if, for all x, y C V, 

(3.1) If(x) - / ( y ) [  _< 1. 

Assume V is equipped with a probability measure # and define 

p(#) = inf{#(A):  A C V, #(A) _> 1/2}. 

PROPOSITION 3.1: 

p - q  
(3.2) a2(Kv' #) = 2(logp - log q) '  

where p = p(#) and q = 1 - p. 

I fp  = 1/2, the above expression is defined to be 1/4 by continuity. In the partic- 

ular case where # = 7r, the normalized counting measure, when v = card V = 2r, 

we have p(~) = 1/2, and when v = 2r + 1, we have p(Tr) = (r + 1)/(2r  + 1). 

Therefore: 

COROLLARY 3.2: For the completely connected graph V of cardinality v equi- 

pped with the normalized counting measure, a2(Kv) = 1/4, i f  v = 2r, and 

a2(K~) = 1 i f  v = 2r + 1. 
2(2r + 1) log r+l ' 

r 

Thus, i f  K~ (on the set of vertices V n) is the n-th power of Kv, with v = 2 r +  1, 

with the Hamming distance d and the normalized counting measure lr n, for 

every set A C V n of measure 7rn(A) >_ 1/2, and for 

,/ n 

h _> 2(2r + 1) log ,-+1, 
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we have 

(3.3) 7rn{x �9 V n : d(x, A) >_ h} <_ r n h n 

When v = 3, this yields the second part of Proposition 5.2 below, since 

K3 = C3. If v = 2r, the inequality (3.3) should be replaced by the slightly 

weaker inequality 

(3.4) 7rn{x �9 Vn: d(x,A) > h} < exp{ ( 2 h -  v~)2 }, 2h > v~ .  

Note that  since the complete graph is a Hamming space, (2.9) is slightly better  

than (3.4). Note also that c2(Kv, it) = p (# ) (1 -p (#) ) .  Hence, with respect to the 

normalized counting measure on Kv, c2(Kv) = 02(Kv) = 1/4, if v is even, and 

c2(Kv) < 02(Kv), otherwise. Finally, note that the general bound 02 _< D2/4 
(which follows from Corollary 3.3 in [A-B-S]), where D is the diameter of the 

graph G, can be tight as the computation of 02 of the complete graph shows. 

Proof of Proposition 3.1: The functional f --* L(t, f)  = Eue t(y-E.f) is transla- 

tion invariant, so maximizing this functional in the class of functions satisfying 

(3.1), we can restrict ourselves to 0 _< f _< 1. The class .To of such functions 

is compact and convex, and the functional f --* L(t, f )  is convex. Hence, it 

attains its maximum on 9ro at some extremal "point" of .To. But the extremal 

functions in ~-0 are just indicator functions f = 1A, A C V. Thus, 

sup L(t, f )  = sup L(t, 1A). 
Ie.T(G) ACV 

Therefore, the optimal constant 02 = 02(Kv, #) in the inequality 

L(t,y) < e ~2t~/2, f �9 ~(G),t  �9 R, 

satisfies 62 = SuPAcV 0~, where o~ is the optimal constant in the inequality 

L(t, 1A) ~ e a2At2/2, t E R .  

Any function f = 1A is a Bernoulli random variable on the probability space 

(V, #), taking the values 1 and 0 with probabilities #(A) and #(B),  respectively, 

where B = V \ A = A c. Hence by Proposition 2.1, 

o~  = #(A) - # (B)  
2(log tt(A) - log #(B))" 
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Since a~ = a~, we may restrict ourselves to the cases #(A) ~_ #(B), i.e., 

#(A) >_ 1/2. Thus, 
a 2 = sup P - q 

~(A)=p>_l/2 2(logp -- log q)' 

where q -- l - p ,  p = #(A), and the sup is taken over all A C V with #(A) _> 1/2. 

To prove (3.2), it remains to show that  the function u(p) = (p -q) / ( log  p - l o g  q) 

is decreasing in (1/2, 1). Let 

logp - logq 
v ( p )  - , 1 / 2  < ; < 1. 

p - q  

We have: v'(p) > 0 iff (p - q)/pq >_ 2(logp - log q), which can be rewritten as 

w(p) -- 2pq( logp-  logq) - ( p - q )  < O, 1 / 2 < p < 1 .  

Since wt(p) = -2(p  - q)(logp - logq) < 0, the function w is decreasing. But 

w(1/2) = 0, so w is negative on (1/2, 1). Thus v is increasing, that  is, u is 

decreasing. Proposition 3.1 is proved. I 

4. v -pa t h  

v-path is the graph G = Pv with V = {1 ,2 , . . . , v}  where {x , x  + 1} (x = 

1 , . . . ,  v - 1) are the only pairs of connected vertices. Let us find the function 

LG in this case, assuming that  v _~ 2. An element of bY(G) is an arbitrary 

function f on V such that  

[ f ( x + l ) - f ( x ) [ < l ,  f o r a l l x - - 1 , . . . , v - 1 .  

We want to show that, whenever t E R, in the class ~(G)  the value of Ee t(f-Ef) 

is maximized for the identity function 

f*(x)  = x. 

In fact, there is a general principle involving this statement: 

PROPOSITION 4.1: Let # be a Borel probability measure on R such that the 

half-axes ( -ec ,  x] are extremal in the isoperimetric problem for #, i.e., for all 

p E (0, 1) and h > O, the infimum 

inf{#(A + ( - h ,  h)) :  A norel, #(A) _> p} 

is attained at the half-axis A = (-oo,  x], for some x E R.  Then, for any Lipschitz 

function f on R (with Lipschitz constant at most 1), and for all t E R,  

(4.1) E~e t( f-E"l)  ~_ E~e t(f*-E.f*). 
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The proof of this proposition and of the following one are given at the end of 

this section. It should be clear that the uniform measure # = ~r on V satisfies the 

condition of Proposition 4.1. Therefore, Lc( t )  = LG(t, f*),  and since E~f* = 

(v + 1)/2, it follows that 

1 v e v t  1 
L c ( t , f * ) =  v E e t ~ e - t ( v + l ) / 2 = e  t - 

x=l  v(e t -- 1) 
e_t(v+W2 - sh(vt /2)  

vsh( t /2)"  

Thus: 

PROPOSITION 4.2: For any Lipschitz function f on the v-path Pv and for all 

t c R ,  
Eet(f_E: ) < sh(vt /2)  

- v sh ( t /2 ) '  

the expectations being with respect to the uniform measure. In turn, a2(Pv) = 

(v 2 - 1)/12. 

Remark 4.3: For every probability measure # on R and every Lipschitz func- 

tion f on R, 

1 / /  ~ / /  
Vart,(f ) = ~ ( f ( x )  - f (y ) )2d#(x)d#(y)  <_ (x - y)2d#(x)d#(y)  

R ~ R 2 

: Var.(f*). 

Therefore, the spread constant of the v-path is 

_ v ( v  + 1 ~  2 v 2 - 1 
c~(P~) =Vary(f*)  = 1 E x  2 _  \ T ]  - 12 

v 
x=l  

Thus, c2(Pv) = a2(p.).  According to (1.4)-(1.7), we obtain: 

PROPOSITION 4.4: Let p n  be the n-th power of the v-path Pv with the uniform 

measure n n on the set of vertices V ~. For all A C V ~, such that TrY(A) >_ 1/2, 

(4.2) 

{ 0(h§ v n: } 
1 -  ~r"(A h) <_ exp - n(v 2 - 1 )  ' 

/ -W-1  
h + 1> V - - i T n ,  h--  0,1,2 . . . .  

As shown by Bollobks and Leader, a result stronger than Proposition 4.4 

is true for the n-th power of any graph C. (Their result has an h in place of 
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h + l -  ~v/-n in the right hand side of (4.2).) Using Corollary 14 of [B-L2], we can 

also write Proposition 4.4 for arbitrary G n. For completeness, let us state their 

Corollary 14 here. (In plain words, it states that G n has the worst isoperimetry, 
or minimum vertex boundary, when G is a path.) Let V n = {0, 1 , . . . ,  v - 1} n 

denote the set of vertices of the n-th power of a v-path, let 

B ( n ) ( r ) = { x c V n : E x i ~ r } ,  r = 0 , 1 , . . . ,  
i 

and let b (n) (r) = IB(v n) (r)l (here and below, I" denotes cardinality). Then: 

LEMMA 4.5 ([B-L2]): Let G1,..., Gn be arbitrary connected graphs, each on v 
vertices, and let [] denote Cartesian product. Then for all A C GI[]G2 .. .  []Gn, 
with [A[ _> b(~n)(r), 

[Ah[ >_ b(~)(r + h), for all h. 

Together Proposition 4.4 and Lemma 4.5 imply as claimed: 

PROPOSITION 4.6: Let G ~ = G1D...[:]Gn. Then for a11 A C G ~ such that 

~ ( A )  _> 1/2, 

{ 6 ( h + 1 - ~ )  2} v / ~ - I  
1--~(Ah)_<exp -- n ( v 2 _ l  ) , h + l _ > V ~ n ,  h = 0 , 1 , 2 ,  . . . .  

Perhaps it is to be remarked that Bollobs and Leader obtain their stronger 
version of Proposition 4.6 by actually finding the extremal sets minimizing ~ (A h) 

for all h _> 1, whereas the proof (of our weaker result) is simpler since we derive 

Proposition 4.4 directly, with a functional-analytic approach, without having to 

find the extremal sets. 

The following corollary, whose proof makes use of Proposition 4.2, guarantees 
that the v-path is extremal for the subgaussian constant (and hence the spread 
constant) among all graphs on v vertices: 

COROLLARY 4.7: For any connected undirected graph G on v vertices, a2(G) _< 
(v 2 - 1)/12. 

Proof: For a graph G, by a Lipschitz function with respect to G, we mean 

a function which is Lipschtiz with respect to the usual graph metric given by 

G. The proof follows from the observation that any function which is Lipschitz 

with respect to an arbitrary G, with v vertices, is also Lipschitz with respect 

to the v-path Pc. To be formal, let t E R be fixed, and let g be Lipschitz with 
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respect to G = (V, E) with IV] = v vertices. Without loss of generality let 

min~ey g(x) = 1. Then clearly we may order g as follows: 

1 = g(T1) <_ g(T2) < ' ' "  _~ g(~'v), 

where T is an appropriate permutation of V, and furthermore, g(Ti) <_ i. Thus 

for each t C R, we may indeed view g as a Lipschitz function on Pv. Now 

the result follows from Proposition 4.2, which establishes the extremality of the 

identity function f* on Pv (see in particular (4.1)). 

Note that  it also follows now that  the v-path is extremal for c2(G) among all 

graphs on v-vertices - -  one can either use the above argument or simply appeal 

to the fact that  c2(G) ~ a2(G) for all G. | 

We can now pass to the proofs of Propositions 4.1 and 4.2. As shown in 

[B-H2], the extremal property of the half-axes in the isoperimetric problem for 

# on the real line implies that  # has a finite exponential moment. In particular, 

f* and thus all Lipschitz functions on R are #-integrable. Hence, both sides 

of the inequality (4.1) are well-defined. First we establish this inequality for 

monotone Lipschitz functions. 

LEMMA 4.8: Let l~ be a probability measure on R with finite first moment,  

i.e., E,[f*] = fR ]xidp(x) < +co. Then, (4.1) holds true for any non-decreasing 

Lipschitz function f on R and for all t >__ O. I f  the measure # is symmetric about 

a point, then (4.1) holds for all t E R .  

In general (4.1) is not true for all Lipschitz functions f on R,  even if p is 

symmetric. A simple counterexample to (4.1) is given by the function f ( x )  = Ix[ 

with respect to measures of the form # = Phz +P~-z  +q~o with sufficiently small 

p and large x. Thus, in order to obtain an extremal property for the function f* 

in the class of all Lipschitz functions, an extra condition on # is required. Such 

an extra condition, based on the extremal property of the half-axes as stated in 

Proposition 4.1, will be used. 

Proof of Lemma 4.8: We use the following well-known functional representation 

of the entropy: for every measurable function h defined on some probability 

space, 

(4.3) log Ee h = sup [Egh - Eg log g], 
Eg----1 

where the sup is taken over all measurable non-negative (and for simplicity 

bounded) functions g with Eg = 1. Clearly, this supremum is attained at 
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9 ---- eh/Ee h. Thus, when the measure # and the functions g, h are considered on 

the real line R,  and h is non-decreasing on R,  the extremal g is non-decreasing, 

as well. Hence in this case, it suffices to restrict ourselves to non-decreasing 

functions g in (4.3). In particular, applying (4.3) to the nondecreasing function 

h = t ( f - E z f ) ,  we have a representation in terms of the covariances covz (f, g) = 

E f g - EfEg:  

(4.4) 

Now use 

log Et~e t(f-Ef) = sup [t cov(f, g) - Eg logg], g nondecreasing. 
E9=1 

1// 
cov(f,  g) = ~ ( f (x)  - f (y))(g(x)  - g(y))dp(x)d#(y). 

R2 

Moreover, if both f and g are non-decreasing and if f is Lipschitz, then for all 

x, y E R,  

( f ( x ) - f ( y ) ) ( g ( x ) - g ( y ) )  ~ ( x - y ) ( g ( x ) - g ( y ) )  = ( f * ( x ) - f * ( y ) ) ( g ( x ) - g ( y ) ) .  

Hence, co%(f ,g )  < cov , ( f* ,g) ,  and thus, by (4.4), 

log Et, e t( f-Ef) <_ log Et~e t(f*-Ef*). 

This proves Lemma 4.8 (the second statement is trivial since then f* - E~f* 

and Et, f* - f* are identically distributed). | 

Clearly, Lemma 4.8 can equivalently be formulated as follows: Let ~ and 

be integrable random variables on some probability space (f~, #). If, for some 

non-decreasing Lipschitz function f from R to R,  r/ and f(~) are identically 
distributed, then, for all t >_ 0, 

(4.5) E~et(n-E, ~) <_ E~et(~-E,~). 

In order to check the assumptions of this statement and thus get (4.5), one may 

use the following characterization proved in [B-H2] (Proposition 2.6 therein): 

LEMMA 4.9: Given two random variables ~ and ~ on (~, #), the existence of 

a non-decreasing Lipschitz function f from R to R such that ~ and f(~) are 

identically distributed is equivalent to the inequality 

(4.6) #{~ < mp(~?) + h} )I_ #{~ < mp(~) + h}, 
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holding for all p E (0, 1) and h > O, and where mp denotes the minimal quantile 
(o[ order p) of a random variable. 

Proof of Proposition 4.1: The extremal property of the half-axes implies that  

1) # is symmetric about some point; 

2) for every Lipschitz function on R,  there exists a non-decreasing Lipschitz 

function on R with the same distribution (with respect to #). 

The property 2) is stronger than 1), since 2) applied to the function f = - f *  

implies 1). In order to derive 2) from the extremality of the half-axes, we use 

Lemma 4.9. Indeed, given a Lipschitz function f on R, let 

Ap = {x C R :  f (x)  <_ mp(f)}, 0 < p < 1, 

where mp is the minimal quantile of f with respect to #. By assumption, there 

exists x E R such that  #( ( -oo ,  x]) >_ p and #(Ap + (-h ,h))  >_ #(( -oo,  x + h)), 

for all h > 0. The minimal value of x with the property # ( ( -co ,  x]) _> p is 

x = mp(f*), in which case #((-oo, x + h)) = #{f* - mp(f*) < h}. Thus, 

#(Ap + ( -h ,  h)) _> #{f* - mp(f*) < h}. 

But since f is Lipschitz, Ap+ (-h ,  h) C {x E R : f (x)  < rap(f) +h}.  Therefore, 

# { f - m p ( f ) < h } > _ # { f * - m p ( f * ) < h } ,  h > 0 ,  0 < p < l .  

So, (4.6) and thus (4.5) hold for 77 = f and ( = f*. Proposition 4.1 is proved. 
| 

Proof of Proposition 4.2: It remains to show that  the optimal value of 0 -2 -- 

a2(pv) in 

sh(vt/2) < e~27/2, t E R, 
(4.7) vsh(t/2) - 

is (v 2 - 1)/12. Taking the logarithm of both sides in (4.7) and setting s = t/2, 
we need to find the optimal constant a 2 satisfying the inequality 

(4.8) qo(s) = log(sh(vs)) - log(sh(s)) - 2a2s 2 < logv, s > O, 

where by continuity, ~(0) = log v. Next, for s > O, 

ch(vs) ch(s) 
~'(s) - Vsh- -~  sh(s) - 4a2s' 

v 2 1 
~"(s) - sh2(vs---- ~ + sh2(s) 4a 2, 

1 ,,, v 3 ch(vs) ch(s) 

( s ) -  sh3( s ) sh.(s). 
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Using Taylor's expansion for the hyperbolic functions, we easily find that  

~o'(0 + )  = l im ~o'(s) = O, 
s---*O+ 

v 2 - 1 
~"(0+) - 3 4a2" 

Therefore, (4.8) implies ~"(0 +) _< 0, i.e., for the optimal a 2 in (4.8), we have 

a 2 _> (v 2 - 1)/12. It remains to show that  a 2 = (v 2 - 1)/12 satisfies (4.8). To 

do so, it is enough to show that  ~ is concave, i.e., ~"(s) _< 0, for all s > 0. Since 

~"(0 +) = 0, it is sufficient to show that,  for all s > 0, ~'"(s) _< 0, i.e., 

(vs) 3 ch(vs) < s 3 ch(s) 

sh3(vs) - sh3(s) 

Clearly, this inequality follows if the function r = s 3 c h ( s ) / s h 3 ( s )  is non- 

increasing in s > 0, that  is, if the function 

O(s) = log r = 3 log s + log ch(s) - 3 log sh(s) 

is non-increasing in s > 0. So, let us verify that  

3 sh(s) 3ch(s) 3 1 +ch2(s) 
O ' ( s ) = - + - -  - - -  

s ch(s) sh(s) s sh(s) ch(s) -< O, 

which can equivalently be rewritten as 

2 
(4.9) u(s )  = 3sh(s)ch(s) - s ( 1  + ch(s)) _< 0, s _> 0. 

Since u(0) = 0 and u ' ( s )  = 4sh(s)(sh(s) - s c h ( s ) )  _< 0, u is non-increasing in 

s _> 0. This proves (4.9) and thus Proposition 4.2. | 

5.  v-cycle a n d  d i s c r e t e  t o r u s  

The v-cycle G = Cv can be viewed as the subset V of the complex plane C 

given by 

V = {xk  = e 2~ik/v : k = 0 , 1 , . . . , v -  1} 

where { X k , X k + l }  (k = 0, 1 , . . .  , v -  1) are the only pairs of connected points 

(with the agreement that  xv = x0). For example, a 2-cycle is also a 2-path, but 

for v > 3, a v-cycle is not a v-path. The graph distance on the v-cycle is up to 

a constant the geodesic distance on V considered as a subset of the unit circle 

S 1 C R 2. Thus, an element of 3C(G) is an arbitrary function f on V such that  

(5.1) I f ( x k )  - f ( x k - 1 ) l  <_ 1, 

for all k = 1 , . . . ,  v. In analogy with the v-path, one can suggest the following. 
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CONJECTURE 5.1: In the class S ( G )  of all Lipschitz function f on the v-cycle 

G = Cv, for all t E R ,  the value of 

LG(t, f )  : Ee t ( f -Ef)  

is maximized for the function f ( x )  = d(x, xo) or f ( x )  = - d ( x ,  xo), x e Y (the 

expectations are with respect to the normalized counting measure 7r on V).  

We verified the conjecture to be true for v <_ 4. We present below the proof 

for the case v = 3, in part to illustrate the fact that  the corresponding constant 

a 2 (C3) is distinct from the spread constant c 2 (C3). More importanly, the general 

observations made as part of this proof lead to verifying the conjecture for v 

even (see Remark 5.5 below). 

First, let us simplify the problem of maximization of the functional f 

LG(t, f ) ,  f C S (G) .  This functional is translation invariant, L a ( t , f  + c) = 

LG(t, f ) ,  so we can always assume that  f (xo)  = 0. Denote the set of such 

Lipschitz functions by S0(G). Next, this functional is clearly convex. There- 

fore, since So(G) is a convex and compact set, Lc( t ,  f )  is maximized for some 

extremal function f of So(G). In order to describe the extremal functions, we 

associate every function f E S0(G), according to (5.1), with the vector 

Y : (Y l , . . . ,Yv )  6 [-1,1] v, Yk : f ( x k ) - - f ( x k - 1 ) ,  k = 1 , . . . , v ,  

such that  

(5.2) Yl + " "  + Yv = 0. 

Thus, the map T: y ~ f allows us to identify So(G) with the intersection Mo 

of the cube [-1, 1] v with the hyperplane defined by (5.2). But, as easily seen 

(and proved), when v = 2n is even, the extreme points of M0 are the sequences 

(5.3) y = ( •  +1) 

with the number of pluses equal to the number of minuses (= n). When v = 

2n + 1 is odd, the extreme points of M0 are the sequences of the form 

(5.4) -- ( + 1 , . . . ,  +1, 0, + 1 , . . . ,  • 

also with the number of pluses equal to the number of minuses (= n), but with 0 

at some place. Thus, in order to maximize Lv( t ,  f )  in the class S(G) ,  it suffices 

to consider the functions f on V with the property that  

(5.5) y(xk) - y(xk_l) = +1, 
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for all k = 1 , . . . ,  v in case v = 2n, and in case v = 2n + 1, with the property 

tha t  (5.5) holds for all k = 1 , . . . ,  v except for one value of k for which f ( x k )  -- 

f ( x k -1 )  = 0, with in addition in both  cases the number of +1 equal to n. 

Now, denote by S the shift operator on RV: (Sy)k = Yk+l with the agreement 

tha t  Yv+l = Yl. Then, T(Sy )  = T(y)  + c, so L c ( t , T ( S y ) )  = L c ( t , T ( y ) ) .  

Therefore, maximizing Lc( t ,  T(y) )  among all y �9 M0, we can restrict ourselves 

to extremal sequences y �9 ex(Mo) as in (5.3)-(5.4) whose transforms by shift 

operation form the whole set ex(Mo). 

For example, when v = 3, up to the shift t ransformation there exist only 

two extremal sequences (0, 1, - 1 )  and (0, - 1 ,  1), and the rest of the sequences 

( 1 , - 1 , 0 ) ,  ( - 1 , 1 , 0 ) ,  ( 1 , 0 , - 1 ) ,  ( - 1 , 0 , 1 )  can be obtained from the first two 

sequences using the shift operator  possibly applied twice. The sequence y = 

(0, 1 , - 1 )  corresponds to the function f = T(y)  such tha t  f (xo)  = 0, f ( x l )  = 1, 

f (x2)  = 0, that  is f ( x )  = 1 - d(x, x l )  which, up to an additive constant, has 

the same distribution as the function - d ( x ,  xo). The second sequence y = 

( 0 , - 1 , - 1 )  corresponds to the function f = T(y)  such tha t  f (xo)  = O, f ( x l )  = 

- 1 ,  f (x2)  = 0, that  is, f ( x )  = d(x, x l )  - 1 which up to a summand has the 

same distribution as the function d(x, Xo). This proves the conjecture in the 

case v : 3: 

(5.6) Lc( t )  = m a x { L G ( t , f ) , L c ( - t , f ) } ,  where f ( x )  = d(x, xo), x �9 V. 

Now, 

E f  ---- f (xo)  + f ( x ] )  + f ( x l )  2 e -2t/3 + 2e t/3 
3 = ~, L c ( t , f )  = Eerie  -2t/3 = 3 

As is easily seen, Lc( t ,  f )  < L c ( - t ,  f ) ,  for all t ~ 0, in which case the 

function f ( x )  = - d ( x ,  xo) maximizes L c ( t , f ) ,  while for t <_ 0, the function 

f ( x )  = d(x, xo) maximizes LG(t, f ) .  We can now summarize: 

PROPOSITION 5.2: For the 3-cycle G = C3, we have 

e2[t]/3 -.}- 2e-It[/3 
Lg( t )  = 3 , t c R.  

In particular, a2(C3) = 1/6 log 2. 

Proof." It  only remains to find the optimal  constant a 2 satisfying the inequality 

LG(t) = 1 2tl3 + 2e- t l~  < e~t212, t > O. 
3 e ~ - _ 
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Note that  Lc(t) = Ee t(~-E~) where ~ is a Bernoulli random variable taking the 

values 1 and 0 with probabilities p = 1/3 and q = 2/3, respectively. But by 

Proposition 2.1, 

(5.7) 2a 2 - P - q 
log p - log q 

When p = 1/3, 2a 2 = 1/(31og2). Proposition 5.2 is proved. | 

Remark 5.3: The functional f --* Var f is convex, hence it attains its maximum 

in ~ ( G )  at the function f (x)  = d(x, Xo) (since V a r ( - f )  = Var f and since the 

functions f and - f  are the only functions to be considered as explained above). 

Thus, 
2 

c 2 ( C 3 )  = <  2(c3). 

We omit the proof of the conjecture for a2(C4) since it follows, using the 

tensoring property, that  a2(C4) = 2a2(p2) = 1/2 - -  observe that  C4 = P2OP2, 

the Cartesian product graph of/)2 with itself. In fact, we have: 

PROPOSITION 5.4: For the 4-cycle Ca, LG(t) = (1 + ch(t))/2, t C R. In parti- 
c,la , c 2 ( C 4 )  = - 1 --  7" 

Remark 5.5: C. McDiarmid pointed out to us that  in the case of v even, the 

above conjecture is true and follows from an elementary argument based on 

some of the above observations. Suppose that  v is even and that  the conjecture 

is not true. Fix t E R and consider an arbitrary Lipschitz f .  Further suppose 

(without loss of generality, see e.g. the discussion leading to (5.5) above) that  

we restrict ourselves to Lipschitz f whose range lies in R = {0, 1 , . . . , v / 2 } .  

Then either every value in R \ {0, v/2} has precisely two pre-images or there 

exists an i E R with at least three pre-images. In either case, it is easy to see 

that  we can define (by simply permuting the values of f )  a Lipschitz g so that  

Ee t(9-Eg) = Ee t(/-E/),  and that  g(xk) -- g(xk-1) = 0, for some 1 < k < v; but 

now (5.5) shows that  such a g cannot be extremal! 

Unfortunately, the above argument does not seem to extend to the odd case. 

However, recently Marcus Sammer and the last author showed [S-T], using the 

transport  formulation (mentioned in the introduction) of the subgaussian, that  

for v > 3, 

V 2 
a2(Cv) = (1 + O(1/v))c3(PFv/2]) = (1 + O(1/v))  4- ~. 
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To conclude this section, we state a result which corresponds to Conjecture 5.1 

when maximizing the variance. The proof requires some tedious case analysis 

and can be found in [BHT]. 

PROPOSITION 5.6: In the class of all Lipschitz functions f on the v-cycle G = 

Cv, Var f is maximized for the function f(x) = d(x, xo), x E V (the variance is 
with respect to the normalized counting measure lr on V). In particular, 

( 5 . 8 )  

{ v2+~ i fv  is even, 
c = 48  , 

(~:-1)(v:+3) if v is odd. 48v 2 

6. S y m m e t r i c  g r o u p  

In the following we consider two natural metrics on Sv, the symmetric group 

of all permutations of elements in the sequence (1 , . . . ,  v). Any element x of Sv 

may be viewed as a bijection of the set Iv = {1, . . . ,  v} onto itself. For x, y C S~, 

the product xy is the bijection such that (xy)(i) = y(x(i)), for all i = 1 , . . . ,  v. 

As usual, we also write xi instead of x(i). The canonical metric dv on Sv (cf. 

[A-M]) is induced from the Hamming space I~ (of which Sv is a subspace): 

(6.1) d~(x,y) = card{i ~_ v: xi r Yi}, x ,y  C S~. 

PROPOSITION 6.1: For all v > 2, a2(Sv,dv) <_ v -  1. In other words, for every 

dv-Lipschitz function f on Sv and all t E R,  

(6.2) Ee t(f-Ef) ~ e (v-1)t2/2, 

where the expectations are with respect to the normalized counting measure 

~rv on Sv. In particular, for all A C S,  with %(A) >_ 1/2, and all integer 
h > _ V ~ - l ,  

(h v7- )2 
(6.3) 7rv{x e Sv: dv(A,x) > h} < exp{ - 

- - , 

A concentration inequality for (S~, dr) was first obtained by Maurey in [M] 

who proved that  for all A C S.  with ~r~(A) _> p, 

(6.4) 7r,{x E Sv: dv(x,A) > h} < exp( - (h _ 2v/V log(i/p))2 }. 
- -  - -  4v 

When p = 1/2, (6.3) slightly improves upon (6.4). 
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Denote by si,j the transposition of i , j  E Iv: (si,j)i = j ,  (Si,j)j = i, and 

(si,j)k = k, for k ~ i , j .  In particular, si# is the identity permutation, and we 

also have s:-lw = si,j = sj,i. Given x E Sv, the permutations y = si,jx (i < j)  

are at the least d~-distance from x and could be considered as its neighbors. 

Note that  dr(x, si,jx) = 2 and that  the metric cannot take the value 1. There is 

another natural metric to consider on the permutations: The usual graph metric 

p~(x,y), if we consider {si,jx : i ~ j} as the set of all neighbors of x, should be 

defined as the least number of transpositions z l , . . . ,  zk such that  zl " " z k x  = y. 
In particular, a function f on S~ is p,-Lipschitz if and only if, for all x E Sv 

and all 1 <_ i < j <_ v, 

(6.5) [f(si,jx) - f(x)[ <_ 1. 

We are thus faced with another problem: To get a concentration inequality for 

( Sv, pv ). In general, 

p~(x,y) <_ d~(x,y) - l, x # y ,  

from which it follows that pv(A,x)  <_ dv(A,x)  - 1, x ~t A. Hence, for h > 1, we 

have 

{x E S ,  : pv(x ,A)  > h} c {x e S ,  : d~(x,A) >_ h + l} 

so that,  by (6.3), 

7 r ~ t x c S v : P v ( X , A ) > h }  < e x p { - ( h + l - x / - v - E - 1 ) 2 } ,  h = l , 2 , .  
_ _ 

Thus, concentration for (Sv,dv) implies concentration for (S~,p~). For the 

converse, the Hamming distance dv is at most twice the transposition distance 

p, (trivially, every transposition displaces at most two elements, increasing the 

Hamming distance by at most two). Just as Pv _< dv - 1 can be tight, dv <_ 2pv 
can also be tight: consider (123456..(v - 1)v) and (214365...v(v - 1)), for v 

even. Then dv = v and Pv = v/2.  Thus (6.7) implies (6.3). Indeed, the sharper 

concentration inequality for (Sv,pv) can be obtained as shown next (this is 

similar to a corresponding property of the discrete cube {0, 1}~-1): 

PROPOSITION 6.2: For ali v > 2, ~ <_ c2(Sv,p~) <_ a2(S, ,pv)  <_ ~ .  In 
other words, the upper bound shows that for every p~-Lipschitz function f on 

S~ and all t E R,  

(6.6) Ee t( f-Ef)  <_ e (v-1)t2/s, 
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where the expectations are with respect to the normalized counting measure 

Try on Sv. In particular, for all A C Sv with Try(A) >_ 1/2, and all integer 

h > ! v g - -  1 , 
- -  2 

(2h 
(6.7) ~r~{x E S~: pv(A,x)  _> h} < exp{ - 

The inequality (6.6) appears in a paper of MeDiarmid [McD] inside a marti- 

ngale-based proof of a version of the concentration inequality (6.7) (see the proof 

of Theorem 6.7 and Example 7.1 there). The inequality (6.2) can also be proved 

using Hoeffding's inequality (see page 18 of [Hoef]) for bounded martingale 

differences. The method has been popularised by the work of Maurey [M] and 

has been used since then by many authors; cf., e.g., [Sc], [P], [M-S]. To date, the 

best estimate obtained by this method seems to be given by a 2 (Sv, dr) <_ 4(v-1).  

Versions of Maurey's concentration result have also been recovered (using a 

different method) by Talagrand (see Section 5 in [Tal]). However, our proofs 

of (6.2) and (6.6) are elementary, simply using induction. Since the results are 

essentially known, we omit the proofs and refer the interested reader to [BHT]. 

Proof of the lower bound in Proposition 6.2: It suffices to give a specific Lips- 

ehitz function f with Var f _> (v - 1)/16. The cases v = 1 and v = 2 are obvious 

since c2(Sl,pl) = 0, c2($2,p2) -~ 1/4. Assume v _> 3. For x E S.,  consider a 

function f ( x )  = card{/ _< a : xi _< b}, where the integers a, b E [2, v] will be 

chosen later. First note that  f is p~-Lipschitz with constant 1. Then simple cal- 

culations yield the following: E f  = ab/v, and since f2(x) -- ~ , j < a  lx~<blxj<b, 

we also have 
ab a b ( a -  1) (b -  1) 

E f  2 = __ + 
v v ( v -  1) ' 

where the expectation is with respect to the normalized counting measure. The 

above clearly yields 

ab(ab - (a § b)v + v 2) 
c2(S~,pv) >_ V a r f  = v2(v - 1) 

2 > 1 I f v  > 4 is even, take I f v  --- 3, take a = b = 2, so that  V a r f  = g _ g. 

a = b = v/2, and if v _> 4 is odd, take a = (v - 1)/2, b = (v + 1)/2. In both 

cases a + b = v, ab >_ (v - 1)(v + 1)/4. Hence, 

(ab) 2 _ ( v +  l ) 2 v  - 1 
V a r f -  v2 -1) > 16 

Proposition 6.2 is proved. | 
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7. Log-Sobolev  and subgauss ian  cons tan ts  

As shown by Aida, Masuda and Shigekawa ([A-M-S]) and by Ledoux ([L]) (with 

an argument going back to Herbst), it is also possible to derive subgaussian con- 

centration inequalities, whenever a log-Sobolev inequality holds. Based on these 

works and on ([B-L]), such derivations under log-Sobolev as well as Poincar~ in- 

equalities were given for products of Markov kernels and graph products in 

([H-T]). It is thus quite appropriate to try to compare the log-Sobolev and sub- 

gaussian approaches. For studying graphs and Lipschitz functions on them, a 

natural notion of discrete gradient of f at the point x E V is 

V + f ( x )  = sup ( f ( x ) -  f(y))+, 
y:{x,y}Es 

with a matching definition for V~,  i.e., V~f(x) = supy:{x,y}eE(f(x ) - f (y ) ) - .  
Then, the corresponding log-Sobolev inequality (with the optimal constant 

p+ > 0) is 

ps [E# log # - Ef 2 log E#] < E(V+ f) 2, 

where expectation is with respect to any measure ~r on V. 

We state the following without a proof, since the derivation is straightforward 

using the so-called Herbst argument. The interested reader may find the proof 

in [BHT]. 

PROPOSITION 7.1:  

(7.1) 

In particular, 

Let f be a function on G; then 

~/4p~ t E a .  Eet(f_Ey ) <_ et21 v+/i  2 + 

1 
(7.2) (72(a) < 2p+(V ). 

We may return to the examples analyzed in the previous sections and observe 

that for the normalized counting measure, (7.2) provides estimates of (7 2 which 

are tight up to universal multiplicative constants. For example, for G = (Sv, pv), 

with lr being the normalized counting measure, we have 

1 2 
< p~(Sv) < - 1; v - l -  - v  

the upper bound follows from the computations in Example 4.3 in [D-SC] while 

the lower bound is easily obtained via generic lower bounds given in [Ho], [St]. 

Although in the examples of the previous sections, (72 and 1/p + are of the same 
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order in v, for non-uniform measures, they can be quite different. A case at 

hand is the weighted two-point space with probability of success p; then 

which, for p small, is of the same order 1 / ( -  logp) as a s given in (2.2). Hence, 

in that  case, the concentration inequality obtained via the subgaussian constant 

is much stronger than the one obtained via the log-Sobolev constant. 

ACKNOWLEDGEMENT: We thank David Wilson for the idea regarding the 

lower bound in Proposition 6.2. The last author would also like to thank Colin 

McDiarmid and Noga Alon for various insightful comments. 
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